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ABSTRACT: 

Background and Aim: Bone marrow transplantation (BMT), which accounts for 73.8% of all transplants, 
is a cornerstone therapy for various hematological disorders. It follows a life-threatening complication, 
acute graft vs host disease (aGVHD) with an incidence of 30-60%. Despite being standard, conventional 
immunosuppressive therapies are frequently associated with toxicity, infections, and 70% of non-
responding patients. A novel, highly targeted nanoparticle-based strategy, while being explored in solid 
organ transplantation, remains under-investigated in BMT. This systematic review aims to evaluate the 
efficacy of NP-based strategies to mitigate aGVHD following BMT. 

Methods: A systematic search was conducted using PubMed, Cochrane Library, and Science Direct from 
April 23, 2001, to August 13, 2024, for propensity-matched studies evaluating the efficacy of NP-based 
therapies to mitigate GVHD severity in murine models. Two reviewers independently extracted data. Study 
quality was assessed using the SYRCLE tool. Descriptive analysis was performed as meta-analysis was not 
possible due to heterogeneity in intervention types. 

Results: Of 66 studies, 15 were included with n/group = 2-30; interventions being given through i.v/i.p 
route. Overall, the risk of bias was moderate. NP treatment lowered clinical GVHD scores by 90%(p<0.001 
for ≈ 40%), prolonged survival rates by 93%(p<0.001 for ≈ 21%), lower histopathological tissue damage 
scores in the liver (90%, p<0.001 for ≈ 20%),), intestine (100%, p<0.001 for ≈ 20%), skin (83%, p<0.001 
for ≈ 17% ) and inflammatory cytokines was lowered by 70%( p<0.01 for ≈ 30%). 

Conclusion: NPs therapy has a promising efficacy in mitigating GVHD, with limitations of study design 
and heterogeneous interventions. Focus on high-quality comparative and safety evaluation pre-clinical 
studies is needed for optimization towards clinical trials 

KEYWORDS: Bone Marrow Transplantation, Hematopoietic Stem Cell Transplantation, Graft vs Host 
Disease, Nanoparticles 
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Figure 1: Graphical Abstract 
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Chart 1: Citations of Included Studies 

 

1. INTRODUCTION: 

Bone marrow transplantation (BMT) is a cornerstone therapeutic intervention for a range of life-threatening 
conditions, including both malignant and non-malignant disorders (1). According to Western statistics, 
73.8% of all transplants were allogeneic HSCT (2). Its growing application in modern medicine highlights 
its vital role in improving long-term survival in patients with otherwise fatal diseases (3). BMT is linked to 
many serious complications despite its curative potential, the most significant of which is acute Graft Versus 
Host Disease (aGVHD), which can complicate its medical outcome, having an immense effect on morbidity 
and mortality (1,4,5). The incidence of aGVHD after BMT, disease is approximately 30%-60% (6–9). 
aGVHD occurs when donor-derived immune cells recognize the recipient's tissues as foreign, triggering 
inflammatory responses and subsequent tissue damage (10). This factor significantly compromises the 
overall success rate of BMT and limits its effectiveness (10). 

Currently, standard conventional treatments for aGVHD include systemic immunosuppressive therapy that 
attenuates these immune responses. Despite being common, it is associated with systemic toxicity and 
increased risk of serious infections. This occurs due to the suppression of the body's standard immune 
system (11,12). Of note, up to 70% of patients don't respond to systemic immunosuppressive therapies 
(6,13–16). 

 Now, the utmost need of the hour is to overcome the side effects associated with these conventional 
treatments. For this, several novel therapeutic strategies have emerged that offer localized 
immunomodulation. Among these nanoparticle-based drug delivery systems, one presents a promising 
approach for targeted tissue delivery, thereby minimizing systemic immunosuppression (17). They are 
linked to enhance bioavailability, prolonged drug circulation time, and specific site drug delivery, which 
minimizes systemic exposure and toxicity (3,17,18). Moreover, given the high cost and complications 
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associated with long-term immunosuppressive therapy in resource-constrained healthcare systems, 
nanoparticle-mediated local immunotherapy could offer a cost-effective and safer alternative (18). 

Nanoparticles can also be engineered to modulate the immune responses at various levels, including antigen 
presentation, T-cell activation, and cytokine release (19–21). This immunomodulatory capacity of 
nanoparticles can be utilized efficiently in post-transplant care to enhance transplant success by preventing 
aGVHD and reducing the risk of disease relapse (22). Recent preclinical and early-phase clinical studies in 
this field have yielded encouraging data with nanoparticle-based formulations targeting the immune system 
components that can be potentially used in transplant immunity (23,24). Despite recent developments in 
this field, the integration of nanoparticles in BMT immunomodulation is still in its early stages and requires 
further investigation. Existing literature needs to be systematically reviewed and critically evaluated to 
identify and understand the current landscape of nanoparticle-based immunotherapies in BMT. This 
systematic review aims to critically assess and synthesize current evidence on the efficacy of nanoparticle-
based strategies for localized immunomodulation in bone marrow transplantation, with a specific focus on 
their effectiveness, mechanisms, safety, and translational potential. By consolidating findings from 
preclinical studies, this review aims to identify knowledge gaps and provide guidance for future research to 
accelerate the integration of nanotechnology in post-transplant care. 

2. METHODOLOGY: 

We prospectively preregistered the protocol on the Open Science Framework (OSF DOI: 
https://doi.org/10.17605/OSF.IO/2HA96; registration: https://archive.org/details/osf-registrations-2ha96-
v1). A comprehensive search of Cochrane CENTRAL, PubMed/MEDLINE, Web of Science, 
ScienceDirect, CINAHL, and Google Scholar (2000–2025) was conducted using predefined 
MeSH/keyword combinations for bone marrow/hematopoietic stem-cell transplantation, graft-versus-host 
disease (GVHD), and nanoparticles; a reviewer refined the Boolean string. Records were deduplicated in 
Rayyan, and two reviewers independently screened titles/abstracts and full texts against prespecified 
criteria, with a third resolving disagreements. 

Eligible studies were peer-reviewed, English-language preclinical murine allogeneic BMT models with 
experimentally induced acute GVHD that evaluated intravenously or intraperitoneally administered 
nanoparticle interventions (e.g., drug delivery, immune-cell/biopolymer carriers) versus conventional 
immunosuppression, empty nanoparticles, or no treatment; the primary outcome was GVHD mitigation. 
We excluded non-murine or autologous models, studies without induced aGVHD or primarily focused on 
GVL, gray/unpublished literature, and non-empirical articles, as well as non-IV/IP administration routes 
and combination-therapy designs that precluded an explicit comparator. 

Of 66 records, 15 duplicates were removed; 51 underwent screening, 36 were excluded, and 15 studies were 
included. Two reviewers independently extracted research, animal, intervention, comparator, and outcome 
details into a standardized spreadsheet; a third reviewer adjudicated discrepancies. Risk of bias was assessed 
independently by two reviewers using the SYRCLE tool, with consensus resolution for conflicts. 

https://doi.org/10.63501/xyvdbe23
https://doi.org/10.17605/OSF.IO/2HA96
https://archive.org/details/osf-registrations-2ha96-v1
https://archive.org/details/osf-registrations-2ha96-v1
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Table 1: Study Characteristics of Included Studies 

Identification Methods Population Interventions Comparison Outcomes 

Author Year Country  
Study 
design 

Specie
s Strain Sex Age  

Sampl
e Size 

Inclusion criteria: 
GVHD Induced 

Models 

Housing 
Conditions Intervention Rout

e Dose Frequenc
y Timings Comparator Groups Outcome 

Measures 

Follow-
Up 

Duratio
n 

Bernard
es et al., 

2015 
2015 Brazil  

Pre-
clinical 
animal 
study 

Mouse 
C57BL/6 
× DBA/2 
(B6D2F1) 

* 8–12 
weeks  

5 
Low-dose 

irradiation + 
splenocytes 

Temperature
-controlled 
(23 ± 1 °C), 

12h 
light/dark 

Fullerol NPs i.p 10 mg/kg 14 

Every 48 
hours for 
28days 
post-

transplant 

PBS-treated GVHD 
GVHD (clinical 

scoring, survival, 
weight loss, 

histopathologies) 
47 days 

M0069a 
& 

Saxena, 
2020 

2020 India  

Pre-
clinical 
animal 
study 

Mouse 

C57bl/6 
and F1 

(C57bl/6 
x Balb/c 

F1) 

* 8–12 
weeks  

3 Splenocytes from 
parental strain 

SPF, 
25 ± 1 °C, 

50–60% RH 
AF-SWCNTs i.v 50 μg per 

mouse 

aGVHD-
1 & 

aGVHD-
2 = 4 

aGVHD-1 
& 

aGVHD-2 
= Day 
2,4,6,8 

PBS-treated (vehicle) 
GVHD (clinical 

scoring, survival, 
weight loss, 

histopathologies) 

8–10 
days 

Zhao et 
al., 2023 2023 United 

States  

Pre-
clinical 
animal 
study 

Mouse 
BALB/c 

and 
C57BL/6 

* 8–12 
weeks  

10 
Irradiation + 

splenocytes and 
bone marrow 

Pathogen-
free 

Chitosan-
Alginate 

Nanoencapsulate
d T cells 

i.v 1.0  
× 10^6 1 Day 0 

Non-encapsulated T 
cells (control) + BMC 

control 

GVHD (clinical 
scoring, survival, 

weight loss, 
histopathologies) 

70 Days 

Cheng 
et al., 
2011 

2011 China  

Pre-
clinical 
animal 
study 

Mouse 
BABL/c 
and male 
C57BL/6 

M+
F 

10-12 
weeks  

10 
Irradiation + bone 
marrow/splenocyte

s 

Not 
specified 

Fe₃O₄ MNPs + 
CsA i.p 

600 
mg/kg/da

y 
25 

One Daily 
for 25 days 

post-
transplant 

CsA only group, Fe₃O₄ 
MNPs only group 
Irradiated control, 

Irradiation-only group 

GVHD (clinical 
scoring, survival, 

weight loss, 
histopathologies) 

28 days 

Pareek 
et al., 
2022 

2022 United 
States  

Pre-
clinical 
animal 
study 

Mouse 
BALB/c 

and 
C57BL/6 

F 6-8 
weeks  

10 

Irradiation of 8Gy 
+ Bone Marrow 

cells with/without 
Splenocytes 

* BRNPs i.v 10 mg/kg 5 

One daily 
0-4 days 

post-
transplant 

GVHD model (BM + 
splenocytes) without 
BRNPs &BM only 

group 

GVHD (clinical 
scoring, survival, 

weight loss, 
histopathologies) 

90 days 

Jiang et 
al., 2023 2023 China  

Pre-
clinical 
animal 
study 

Mouse 

C57BL/6  
and 

BALB/ 
c 

M+
F 

8–10 
weeks  

* 
Irradiation of 8Gy 

+ BM cells + 
Splenocytes 

pathogen-
free 

conditions 

Nanosized MSC-
derived 

exosomes 
i.v 300μg/ml 3 

3 times in 
a week 
post-

transplant 

Total body 
irradiation(control 

group),  
BMCs+SCs+PBS(PBS 

group), 
BMCs+SCs+MSC(MS

C control group) 

GVHD (clinical 
scoring, survival, 

weight loss, 
histopathologies of 

liver, skin GIT) 

40 Days 

Tina K. 
Kaiser 
et al., 
2020 

2020 German
y  

Pre-
clinical 
animal 
study 

Mouse 

C57BL/6 
and 

BALB/c 
WT 

* 
8–12 

weeks
.  

3-23 
per 

group 

Irradiation of 8.5 
Gy + BM cells + T 

cells 

specific-
pathogen-

free 
conditions 

GCs on BMP-
NPs vehicle i.p 10 mg/kg 

Short-
term: 3; 
Long-
term, 6 

Short-
term: day 

3,4,5; 
Long-term, 

Day 
3,4,5,7,9,1

2 

BM only, PBS control, 
EP-NP control 

GVHD ( clinical 
scores, survival, 

histopathology og 
GIT, inflammatory 
cytokine profile) 

Short-
term: 6 
days; 
Long-
term 

40-50 
days 

Weijian
g Liu et 
al., 2021 

2021 China  

Pre-
clinical 
animal 
study 

Mouse 
BALB/c 

& 
C57BL/6j 

M+
F 

6-8 
Week

s  
≥ 3 

800 cGy TBI + 
BM Cells+ 
Splenocytes 

specific-
pathogen-

free 
conditions 

MSCs-exosomes 
contain 

functional miR-
223 

i.v MSCs 1 × 
106 1 Day 0 PBS Control+ aGVHD 

group 

GVHD (clinical 
scores, survival, 

histopathologies of 
liver & GIT, 
inflammatory 

cytokine profile) 

20 Days 
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Przybyls
ki S et. 

Al., 
2017 

2017 German
y  

Pre-
clinical 
animal 
study 

Mouse 
C57Bl/6w

t & 
Balb/cwt 

M 
8–12 
Week

s  

2-16 
per 

group 

Irradiation of 8G + 
BM cells + 
splenocytes 

specific-
pathogen-

free 
conditions 

PEI i.v 50 μg 1 Day 0 GVHD control +  
Ibafect treated control 

GVHD ( clinical 
scores, survival, 

inflammatory 
cytokine profile) 

60 Days 

Kuroiwa 
T et. Al., 

2001 
2001 Japan  

Pre-
clinical 
animal 
study 

Mouse 

C57BL/6 
and (B6 × 
DBA/2)F

1 

* 8–12 
weeks  

5 per 
group 

900 cGy TBI + 
BM Cells + 
Splenocytes 

specific-
pathogen-

free 
conditions 

HGF-HVJ on 
liposomes 

vehicle 
i.m 8 µg 4 Day 0, 7, 

14, 21 GVHD control 
GVHD (clinical 

scoring, survival, 
weight loss, 

histopathologies) 
90 Days 

Mei D et 
al., 2024 2024 China  

Pre-
clinical 
animal 
study 

Mouse 

C57BL/6 
& 

BALB/c 
(H2d) 

F 8–10 
weeks  

* 

busulfan (25 
mg/kg/days) and 

cyclophosphamide 
(125 mg/kg/days) 

+ BM Cells + 
Splenocytes 

Specific 
Pathogen 

Free 

encapsulated 
donor T-cell i.v 

2×10^6 
cells per 
mouse 

1 Day 0 

NC 
group, BMCs group, 

BMCs+T cell 
transplant group 

GVHD (clinical 
scores, survival, 

histopathologies of 
liver, skin, GIT, 
inflammatory 

cytokine profile) 

70 days 

Wang L 
et. AI., 
2016 

2016 China  

Pre-
clinical 
animal 
study 

Mouse 
BALB/c 

and 
C57BL/6 

M 8-10 
week  

10-15 
per 

group 

7.5 Gy TBI + BM 
Cells + 

Splenocytes 

specific 
pathogen-

free 
hUC-MSC-Evs i.v 

200 μg of 
hUC-
MSC-
EVs, 

2 
Day 0 & 7 

post-
transplant 

PBS Control 

GVHD ( Clinical 
scores, survival, 
Histopathologies 
of liver, skin, GIT 
& inflammatory 

cytokines profiles) 

60 Days 

Fujii S, 
et al., 
2017 

2017 Japan  

Pre-
clinical 
animal 
study 

Mouse C57BL/6 
C57BL/6 * 7 to 9 

weeks  

5-30 
per 

group 

8 Gy TBI + 
splenocytes 

Specific 
pathogen-

free 

EVs derived 
from human 
BM-MSCs 

i.v 

2 x 10^6 
human 
BM-

MSCs 

1 
Day 5 
post-

transplant 
PBS Control 

GVHD( clinical 
scores, survival, 

histopathologies of 
liver, skin, GIT, 
inflammatory 

cytokine profile) 

100 
Days 

Yi 
Zhang 
et. Al., 
2002 

2002 New 
Haven  

Pre-
clinical 
animal 
study 

Mouse 
C3H.SW 

& 
C57BL/6 

* *  5 to 8 

Irradiation of 9.5 
Gy + Spleen cells 
with/without BM 

Cells 

Sterile 
conditions Lipo-chlodronate i.v 150µl 1 

Day -1 
pre-

Transplant 

Liposomes only 
(control) 

GVHD (clinical 
scores, survival, 

histopathology of 
liver and skin, 
inflammatory 

cytokine profile) 

66 Days 

Ke-
Liang L 
et al., 
2021 

2021 China  

Pre-
clinical 
animal 
study 

Mouse 

e 
C57BL/6 

and 
BALB/c 

M 6–8 
weeks  

10 
Irradiation of 8GY 

+ BM Cells+ 
Splenocytes 

* Msc-exo i.v 200 µg 
exosome 1 Day 0 

IL-10 &  anti-TNF-α 
drug etanercept Treated 

Controls 

GVHD (clinical 
scores, survival, 

inflammatory 
cytokine profile) 

30 Days 

 

Abbreviations: aGVHD / cGVHD,  Acute / Chronic Graft Versus Host Disease; BM, Bone Marrow;  BRNPs,  Bilirubin Nanoparticles; CsA, Cyclosporine A;  F1,  First Filial Generation; GVHD, Graft Versus Host Disease;  GVL, Graft Versus 
Leukemia;  MNPs, Magnetic Nanoparticles;  NPs, Nanoparticles; RH,  Relative Humidity; SPF, Specific Pathogen Free; HSCT, Hematopoietic stem cell transplantation; BMC, Bone marrow control; CTL, Cytotoxic T Lymphocyte ; P, Primary; 
S, Secondary; i.v, Intra-venous; i.p, Intra-peritonea; i.m, Intramuscular; F, Female; M, Male; PBS, Phosphate Buffer Saline; Gy, Gray; BMP-NPs, Hybrid Nanoparticles, GC, Glucocorticoids; MSC, mesenchymal stem cells; BMZ, free 
betamethasone; EP, Empty; BMP; TBI, Total body irradiation; PEI, polyethyleneimine; exo, exosomes; HGF, Hepatic growth factor; HVJ, Hemagglutinating virus of Japan; EVs, Extracellular vesicles;  hUC-MSC-EVs, extracellular vesicles 
released from human umbilical cord-derived MSCs; GIT, Gastrointestinal tract; * Not Reported; _, Not applicable
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3. RESULTS: 

A total of 66 records were identified through multi-database electronic research. After removing 15 
duplicate articles, 51 records remained for screening. Based on the title and abstract, 31 records were 
excluded. The remaining 18 full-text articles were assessed for eligibility, and finally, 15 studies, reported 
across 16 publications, were included in this review. The study selection process and reasons for exclusion 
are detailed in the PRISMA flow diagram given below (Figure 4). 
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3.1 GVHD Assessment 

3.1.1 GVHD Clinical Scoring 

Clinical symptoms, such as weight loss, changes in posture and activity, fur texture, diarrhea, skin integrity, 
and fecal occult blood, are typically graded to assess the severity of acute GVHD. 10 out of 15 included 
studies reported this outcome. A scale of standard scoring system for determining the clinical manifestations 
of aGVHD was employed in each study. The scale assigned grades of 0 to 2 for each clinical parameter 
regarding severity: grade 0 for normal, grade 1 for mild to moderate, and grade 2 for severe. Authors then 
summed up the grades for each criterion to calculate the overall effect size of the intervention. Low clinical 
scores were expected to have a large effect size. 

 

9/10 studies (23,28–35) – 90% – reporting this outcome showed a combined general trend of low clinical 
scores, with a statistically significant difference between the intervention group and the controls. For 
example, in a study (36), authors employed a technique of nano-encapsulation of T cells for localized 
immunomodulation. 1x10^6 Chitosan-Alginate Nanoencapsulated T cells were given through the i.v route 

Table 2: Material-by Mechanism 
Intervention Type Mechanism Target Organs 
Fullerol NPs Scavenges ROS, ↓cytokines Liver, intestine 

BRNPs ↓ ROS and TNF-α/IFN-γ Systemic 

AF-SWCNTs Uptake by T/B cells; depletion Systemic 
Lipo-chlodronate Depletes hepatic/splenic macrophages & DCs; ↓ CD8⁺ 

recruitment 
Spleen, lymphoid tissues 

Chitosan–alginate 
encapsulation 

Blocks donor T-cell contact with host APCs Liver, gut 

Gelatin–alginate capsules Inhibits co-stimulation (CD28–CD80, etc.) Skin, lung, liver 

HGF-HVJ liposomes ↓ APCs; ↓ antigen presentation Small intestine 

MNP-CsA Targets CsA to lymphoid tissues Spleen, liver, intestine 

BMP-NPs + GCs ↓ local intestinal cytokine signaling Liver, intestine 

PEI NPs Gene modulation; ↓ inflammatory pathways Liver, spleen 

MSC-exo Anti-inflammatory miRNAs/proteins ↓ Th1/Th17 Systemic; leukemia (AML) 
sites 

MSC-exo (miR-223) ↓ ICAM-1; reduced T-cell adhesion/migration Intestine, liver, skin 

hUC-MSC-EVs ↓Th1/Th17,↓ Tregs Secondary lymphoid tissues 

BM-MSC EVs Activate iNKT, expand Tregs, ↓ alloreactive T cells Liver, spleen 
Fullerol NPs Scavenges ROS, ↓ cytokines Spleen; systemic cytokines 

Abbreviations: BRNPs,  Bilirubin Nanoparticles; CsA, Cyclosporine A; MNPs, Magnetic Nanoparticles; Evs, Extracellular 
vesicles; MSCs, Mesenchymal stem cells; BM, Bone marrow; hUC, Human umbilical cord; NPs, Nanoparticles; HGF, 
Hepatocyte growth factor;  HVJ, Hemagglutinating virus of Japan 
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at day 0, the day of transplant, and followed up for 70 days. 6 Clinical Parameters, such as weight loss, 
posture, activity, fur texture, diarrhea, and skin integrity, were assessed. The maximum score was 12 
according to the scale above. Compared to mice transplanted with control non-encapsulated T cells, with a 
mean score of 9.7 ± 0.4 out of 12, the mice transplanted with encapsulated T cells developed less severe 
GVHD symptoms, including ruffled fur, fur loss, hunching, weight loss, reduced activity, and diarrhea, with 
a mean score of 4.3 ± 0.5 out of 12. The difference between mean scores was ~5.4 points with p < 0.01. 
Treatment with the Nanoencapsulation strategy essentially reduces the chance of developing cutaneous 
GVHD. 

Another study (37) utilized human BM-MSC-derived EVs with a nanosize. The clinical scores of treated 
mice were lower than those of the control mice, with an average of 2.8 versus 3.5. Consistent with the 
above, this finding showed a moderate link between nanoparticle-based therapies and the amelioration of 
systemic symptoms of acute GVHD. 

A study (MNPs) of the intervention brought no apparent changes in clinical symptoms mitigation between 
the treated and control groups; statistically non-significant results (p>0.05). Findings from GVHD Clinical 
Scoring are summarized in Table 3. 

 

3.1.2 Weight Loss 

Weight loss is a big concern for patients undergoing BMT. This weight loss can have dangerous 
consequences, potentially enhancing the risk of mortality. 14/15 (93%)  reported studies showed a 
statistically significant reduction in weight loss (24, 28–34, 36–41). 

A study (33) reported that weight loss greater than 10% was considered indicative of significant GVHD. 
Hepatocyte growth factor liposomal treatment had no significant effect on the body weights of the recipients 
for 4 weeks after the induction of GVHD. Still, it prevented subsequent weight loss in the surviving mice 
during a 90-day observation period. 

 
Table3: Summary of 
Clinical GVHD Scoring 
 
Intervention 
Type 

p-
value 

Effect 
Size with 

%age 
Rx 2, 3, 14, 
15 

<.001 ***  
40% 

Rx 5, 7 ,11 <.01 **   
30% 

Rx 1, 4 <.05 *    
20% 

Rx 8 >.05 ns   
10% 

                    n/group=5-28 
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3.1.3 Survival Outcomes 

GVHD has an impact on patient survival and long-term outcomes. Knowing these survival outcomes and 
evaluating for prognostic factors is a prerequisite for GVHD management. Fourteen studies (24,28–34,36–
41) reported this outcome measure. Thirteen studies – 93% – showed a positive association between the 
intervention and survival, with a mean follow-up duration of 52 days (range, 6-100). 

For example, in a study (40), authors observed mice for 66 days and reported that 21.1% (n=19) of lipo-
clodronate-treated mice died from acute GVHD, compared to 60.7% (n=23) of controls, with p < 0.01. 
Lipo-chlodronate treatment essentially reduces mortality rates. Another study (37) found that GVHD mice 
receiving systemic infusions of extracellular vesicles derived from Mesenchymal stem cells exhibited 
prolonged survival, with a median survival of 16 days compared to 10 days in control GVHD mice over a 
100-day follow-up period. This intervention probably enhances survival. 

 
Table 4: Summary of Survival 
Outcomes 
Intervention 
Type 

p-
value 

Effect size 
with %age 

Rx  4, 10, 14 <.001 ***  
 21% 

Rx 2, 3, 5, 6, 
11, 12 <.01 **  

50% 

Rx 1, 7, 9 <.05 *  
21% 

Rx 8 >.05 ns  
7% 

n/group=4-32 
 

In study (24), recipient mice with bone marrow (BM) transplant only survived throughout the experiment; 
100% survival of BM cells was observed in controls. Mice infused with a mixture of splenocytes and bone 
marrow cells resulted in significant GVHD-related mortality; 40% survival in BM cell + Splenocyte (HR 
5.898, p=0.0134). Mice in the treatment group showed 90% survival (BM cell + Splenocyte + BRNP 
Treatment) with (HR 0.2055, p=0.0112). It suggested that attacking the early inflammation cascade with 
bilirubin nanoparticles has therapeutic benefits in BMT. Bilirubin Nanoparticles possess a strong positive 
correlation with survival outcomes. Findings from Survival Rates are summarized in Table 4. 

3.1.4 Tissue Histopathology 

GVHD assessment typically involves histopathology to assess organ damage. Histopathology plays an 
essential role in diagnosing and staging GVHD. Liver, gastrointestinal tract, and skin are the most 
commonly affected organs in aGVHD. 
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3.1.4.1 Liver Histopathology 

Ten studies (23,29–32,34,37,39–41) showed a statistically significant decline in liver tissue damage, 
including hepatocyte edema and necrosis, massive inflammatory cell infiltration, fibrosis, and disorganized 
liver lobules in nine studies (90%). 

For example, in a study (36), GVHD pathological scoring was performed according to a standard scoring 
system. Six parameters were evaluated in the liver: portal inflammation, percentage of portal tracts 
involved, bile duct damage, lobular inflammation, bile duct loss, and fibrosis in each section. 0 indicates 
normal, and 1, 2, and 3 represent mild, moderate, and severe tissue damage caused by donor T cells, 
respectively. The grading scheme consisted of ordinal categories ranging from “0” (no effect) to “4” (severe 
effect) as follows. (1) Portal inflammation and lobular inflammation: 0 = none, 1 = minimal, 2 = mild, 3 = 
moderate, and 4 = severe. (2) Fibrosis: 0 = none, 1 = portal, 2 = periportal, 3 = bridging fibrosis, and 4 = 
cirrhosis. Portal inflammation, bile duct damage, lobular inflammation, and fibrosis were detected in mice 
treated with non-encapsulated T cells, and 100% of portal tract inflammation was observed. Portal 
Inflammation scores for non-encapsulated were 3.3 (100%), compared to 1.5 for encapsulated; lobular 
Inflammation scores were 3.2 for non-encapsulated and 1.5 for encapsulated; and fibrosis scores were 0.5 
for non-encapsulated and 0 for encapsulated. The scores in recipient mice transplanted with encapsulated T 
cells were significantly lower than those in mice transplanted with non-encapsulated T cells (p < 0.05), 
suggesting a large effect size of this intervention in minimizing liver damage. 

In another study (33), authors observed that the total number of hepatic mononuclear cells was markedly 
increased from 0.5 × 10^6 to 2.0 × 10^6 after 2 weeks of GVHD. HGF treatment decreased the total number 
of hepatic mononuclear cells from 2.0 × 10^6 to 1.4 × 10^6 cells at 2 weeks, and it significantly reduced 
the number of donor T cells from 1.1 × 10^6 to 0.3 × 10^6 cells, representing a 55% reduction per liver. 
These results indicate that HGF treatment essentially inhibits donor T-cell infiltration into the liver and 
subsequent hepatic injury. Findings from Liver Histopathology are summarized in Table 5. 

 

 

 

Table 5: Liver Histopathology Summary 
Intervention Type p-values Effect Size with %age 

Rx 3, 4 <.001 *** 20% 

   

Rx 5, 6 <.01 ** 10% 

Rx 1, 7, 8, 9, 10 <.05 *   60% 

Rx 11 >.05 ns 10% 

n/group =2-32 
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3.1.4.2 Intestinal Histopathology 

Ten studies (24,30–34,37–39,41) reported this outcome, and all (100%)  showed a statistically significant 
decline in intestinal tissue damage. For example, study (41) stated that bacterial translocation aggravates 
GVHD and can result in sepsis and ultimately in patient death. The number of bacterial colony-forming 
units (CFUs) in the peritoneal cavities of mice with experimental GVHD and treated with fullerol was 
considerably reduced compared with that of untreated mice. The reduced bacterial translocation in mice 
with experimental GVHD, treated with fullerol, correlated with the preservation of intestinal parenchyma. 
A score was generated according to the aforementioned criteria in the liver section. By summing the 
changes, the maximum score index was 9. The authors observed a score of 6 with p < 0.05 in the treated 
group. Fullerol Nanoparticles treatment may prevent intestinal damage. 

In study (24), single cell necrosis per view in 40x object was observed and had p = 0.0029. The authors 
suggested that bilirubin nanoparticle treatment peri-transplantation could prevent histopathologic GVHD 
of the intestine. Findings from GIT Histopathology are summarized in Table 6. 

3.1.4.3 Skin Histopathology 

Six studies assessed skin histopathologies (23,30,31,33,41). Five studies (83%) showed a positive 
correlation between the treatment groups and the prevention of pathological damage in the skin. For 
instance, in a study (37) about the skin, the percentage of mice with severe damage was lower in the 
extracellular vesicles-treated group than in the control group (60.0% vs. 88.8%). This nano-based therapy 
probably prevents the pathological damage in the skin. Findings from Skin Histopathology are summarized 
in Table 7. 

3.1.5 Inflammatory Cytokine Levels 

GVHD assessment in bone marrow transplantation involves tracking immune modulation and cytokine 
effects. These play vital roles in its development and advancement. GVHD occurs when donor immune 
cells (T cells) attack the recipient's tissues. Measuring cytokine levels, such as TNF-α, IL-6, IFN-γ, IL-2, 
and IL-10, helps assess the activity of GVHD. 

 
Table 6: Summary GIT Histopathology 
Intervention 
Type 

p-values Effect Size 
with %age 

Rx 3,4 <.001 ***  
20% 

Rx 1, 2, 5, 13 <.01 **  
40% 

Rx 8, 9, 10, 11  <.05 *   
40% 

n/group =2-32 
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Ten studies (23,28–32,38–41) reported this outcome with a consistent trend of low cytokine profile. 7/10 
studies showed positive findings. For example, in a study (39), the inflammatory improvement in aGvHD 
mice caused by miR-223 was assessed by measuring the expression of proinflammatory factors in serum. 
The expression of IFN-γ, IL-17A, and TNF-α was lower in the miR-223Agomir-treated group (1468.4 ± 
59.8, 49.78 ± 16.8, and 49.9 ± 4.5) than that in the aGvHD group (2773.3 ± 28.4, 342.8 ± 192.2, and 329.2 
± 60.3) or negative control group (2463.1 ± 59.9, 174.3 ± 62.3, and 232.3 ± 15.6) (Fig. 5d). These findings 
indicated that miR-223 essentially reduced the expression of proinflammatory factors in aGvHD mice. 
Findings from Inflammatory Cytokine Levels are summarized in Table 8. Cumulative Studies with Positive 
Findings are given in Chart 2. The Cross-Domain Heat Map Effect is shown in Table 9. The overall efficacy 
ranking is calculated in Chart 3. 

Abbreviations:  BRNPs,  Bilirubin Nanoparticles; CsA, Cyclosporine A; MNPs, Magnetic Nanoparticles; EVs, Extracellular vesicles; MSCs, 
Mesencymal stem cells; BM, Bone marrow; hUC, Human umblical cord; NPs, Nanoparticles; HGF, Hepatocyte growth factor;  HVJ, 
Hemagglutinating virus of Japan;  AF-SWCNTs; Acid functionalized single wall carbon nanotubes; n, Sample size; ***, Highly significant; 
**, Moderately significant; *, Significant; ns, Not significant. 
 
Treatment Code: Rx 1= BRNPs, Rx 2 = GCs, Rx 3 =  hUC-MSC-EVs, Rx 4 =  MSC-exosomes (miR-223), Rx 5 =  Nanosized MSC-derived 
exosomes, Rx 6 =  Lipo-clodronate, Rx 7 =  Chitosan-Alginate Nanoencapsulated T cells, Rx 8 =  Fe₃O₄ MNPs + CsA, Rx 9 =  Fullerol NPs, 
Rx 10 =  HGF-HVJ liposomes, Rx 11 =  EVs (BM-MSCs), Rx 12 = PEI, Rx 13 =  Encapsulated donor T cells, Rx 14 =  Msc-exo, Rx 15 = AF-
SWCNTs 
Note: Limited and highly significant findings have been highlighted in red and Green respectively. 
 

 

Table 7: Summary of Skin 
Histopathology   
Intervention 
Type 

p -
values 

Effect Size 
with %age 

Rx 3 <.001 *** 
 16.7% 

Rx 5 <.01 **   
16.7% 

Rx 1, 8, 11 <.05 *    
50% 

Rx 6 >.05 ns  
16.7% 

n/group =10-23 
 

Table 8: Summary of 
Inflammatory Cytokines Levels 
Intervention 
Type 

p-
Values 

Effect Size 
with %age 

Rx 3, 4, 5 <.01  ** 
30% 

Rx 1, 9, 10, 
14 

<.05 *   
40% 

Rx 2, 7, 13 >.05 ns  
30% 

n/group =2-15 
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 Table 9: Cross-Domian Heat Map Effect 

Treatment Code  Clinical GVHD  Survival Rates   Liver Histo. GIT Histo.  Skin Histo.  Inflam. 
Cytokines 

Rx 1 * * * ** * * 
Rx 2  *** **  **  ns 
Rx 3  *** ** *** *** *** ** 
Rx 4  * *** *** ***  ** 
Rx 5  ** ** ** ** ** ** 
Rx 6   ** **  ns   
Rx 7  ** * *   ns 
Rx 8  ns ns * * *   
Rx 9   * * *  * 
Rx 10   *** * *  * 
Rx 11  ** ** ns * *   
Rx 12   **      
Rx 13    **  ns 
Rx 14  *** ***    * 
Rx 15 ***           
 Effect Sizes: ***, Highly significant; **, Moderately significant; *, Significant; ns, Not significant 
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Chart 2: Cumulative Studies with Positive Findings 
3.2 Risk of Bias Assessment 

Applying the SYRCLE tool’s (27) judgment criteria, we assessed that all studies were adequately reported 
in the baseline characteristics domain and avoided selective reporting (15/15; 100%). In contrast, the 
following domains, sequence generation, allocation concealment, random housing, caregiver blinding, and 
random outcome assessment, were not disclosed satisfactorily in any study (15/15; 100%). Details about 
blinding of outcome assessors were sufficient in 8 out of 15 (53%) studies. No Incomplete outcome data 
were identified in all but one study (14/15; 93%). 

Overall, the reporting quality of the studies was moderate, with several domains lacking a precise 
methodological detail. Only one study was judged to be at high risk of bias in the critical domain of random 
outcome assessment (1/15; 7%). Findings from this study were considered with caution when interpreting 
overall efficacy trends. These gaps suggest potential performance and detection bias, which may reduce 
confidence in outcomes such as histopathology scoring. A domain-wise summary of risk of bias is presented 
in Table 10. 
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Table 10: Risk of Bias Assessment 

Study ID D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 Overall 
Bernardes et 

al., 2015            
Zhao et al., 

2016            
Pareek et al., 

2022            
Mia & 

Saxena,2020            
Cheng et al., 

2011            
Jiang et al., 

2023            
Tina K. et al., 

2020            
Weijiang Liu 
et al., 2021            
Przybylski S 
et. Al., 2017            
Yi Zhang et. 

Al., 2002            
Kuroiwa T et. 

Al., 2001            
Lai et al., 

2018            

Wang L et. 
AI., 2016            

Fujii S, et al., 
2017            

Ke-Liang L et 
al., 2021            

    

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

D1 Sequence Generation 
D2 Baseline characteristics 
D3 Allocation concealment 
D4 Random housing 
D5 Blinding of caregivers 
D6 Random outcome 
assessment 
D7 Blinding of assessors 
D8 Incomplete outcome data 
D9 Selective reporting 
D10 other sources of bias 
 

 Low Risk   
 Moderate Risk  
 High Risk 
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4. DISCUSSION 

From Table 9 and Chart 3, it is evident that the efficacy of different NP interventions in mitigating aGVHD 
varies considerably across domains. hUC-MSC-EVs treatment achieved the highest efficacy index, aligning 
with a similar study (42), which highlights the findings of reduced pro-inflammatory cytokine expression 
and demonstrates that encapsulation techniques significantly enhanced the treatment's protective effects. 
HGF-HVJ (miR-223) consistently demonstrated a strong multi-domain protection, which is corroborated 
by a similar study (43). Fullerol NPs and nanosized MSC-derived exosomes also demonstrated broad and 
substantial benefits, particularly in reducing inflammatory cytokines and tissue pathology, as shown in a 
study (44).  

 

Chart 3: Overall Efficacy Ranking 
Table 9, Chart 3: Treatment Code: Rx 1= BRNPs, Rx 2 = GCs, Rx 3 =  hUC-MSC-EVs, Rx 4 =  MSC-exosomes (miR-223), Rx 5 =  Nanosized MSC-derived 
exosomes, Rx 6 =  Lipo-clodronate, Rx 7 =  Chitosan-Alginate Nanoencapsulated T cells, Rx 8 =  Fe₃O₄ MNPs + CsA, Rx 9 =  Fullerol NPs, Rx 10 =  HGF-
HVJ liposomes, Rx 11 =  EVs (BM-MSCs), Rx 12 = PEI, Rx 13 =  Encapsulated donor T cells, Rx 14 =  Msc-exo, Rx 15 = AF-SWCNTs 
Note: Effect size index has been calculated by considering 1*=1 

 
 
In contrast, the findings of PEI and Fe₃O₄ MNPs + CsA were constrained, indicating limited efficacy, which 
aligns with the study (45). Collectively, these findings highlight that NP-mediated delivery provides a potent 
therapeutic efficacy across all domains. Our findings confirm the validity, robustness, and highly targeted 
immune regulation of the novel treatment. Compared to previous narrative reviews, this study provides a 
unique mechanistic map by linking each material type to the underlying immunological mechanism.  
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Although nanoparticle applications are expanding rapidly, they still face challenges in their translational 
aspects. Since 2019, only a few NPs have been approved by the FDA or the European Medicines Agency 
(EMA) (46). We should focus on nanoparticle platforms that facilitate the use of FDA-approved drugs (47). 
Additionally, no active targeting NPs have progressed beyond clinical trials (48). Due to their more complex 
design, they face more challenges in scale-up production (48). To make it more reliable, they require more 
characterization steps and a longer development timeline, which increases costs (48). The following are 
emerging technologies that can aid in characterizing single nanoparticles (49). Nanopore-based 
technologies: Label-free, single-molecule nanopore sensing has been expanding for the sequencing of 
nucleic acids and protein-based analytes (50–53). 

 

Chart4: Cumulative Efficacy in Individual Domain 
 

In cytotoxicity profiling, dose-dependent cytotoxicity and genotoxicity have been observed in vitro and in 
vivo (54,55). Future studies should also focus on in-depth toxicology studies. One such solution is better 
characterization of NPs (54,55). Current quality control for nanoparticles has no standardized 
physicochemical characterization (56). Another study demonstrated that traditional techniques used to 
record the amounts of drug content are inconsistent and can lead to discrepancies in reported data (57). 
Control of nanomaterials can help achieve repeatability, determine progress efficiency, and ensure product 
safety (58). Recently, in the clinical domain, the most effective COVID-19 vaccines, to date, utilize 
nanotechnology to deliver immunostimulatory mRNA. However, their high cost equates to low affordability 
(59). Exploration should be conducted for biocompatible and biodegradable materials that are locally 
abundant, easily accessible, and can be used to produce nanoparticles in local labs for mass production. One 
such biomaterial, Chitosan nanoparticles, has been studied in one of our included studies. These can be 
extracted even from house flies’ chitin. However, our findings suggest that its efficacy is limited. Their 
intrinsic biocompatibility positions them as promising candidates for innovative solutions in medical 
interventions (60). 
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The number of patents about nanotechnology has increased significantly between 2000 and 2024 (61,62). 
Fortunately, we have an economic framework for such in-depth studies, as countries such as the US, China, 
and members of the European Union (EU) have integrated nanotechnology into their national strategies (63, 
64). Thus, future studies must vigorously focus on methods to enhance their scientific validity, efficacy, and 
safety levels. 

5. CONCLUSION 

With calibration, these systematic review findings suggest that NPs have a reasonably good efficacy in 
reducing aGVHD. However, current findings are limited by reliance on mouse models, moderate risk of 
bias, and heterogeneity of interventions. Future work should focus on high-quality pre-clinical studies, 
direct comparisons with conventional immunosuppressants, and long-term safety evaluations, followed by 
early-phase clinical trials. The future of nanotechnology will be influenced by ongoing collaboration among 
academic institutions, industry leaders, and governments. 
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List of Abbreviations 

• aGVHD / cGVHD – Acute / Chronic Graft Versus Host Disease 
• allo-HSCT – Allogeneic Hematopoietic Stem Cell Transplantation 
• AF-SWCNTs – Acid-Functionalized Single-Walled Carbon Nanotubes 
• BM – Bone Marrow 
• BMC – Bone Marrow Control 
• BMZ – Free Betamethasone 
• BMP – *Not Reported 
• BMP-NPs – Hybrid Nanoparticles 
• BM – Bone Marrow 
• BMT – Bone Marrow Transplantation 
• BRNPs – Bilirubin Nanoparticles 
• CsA – Cyclosporine A / Cyclosporin A 
• CTL – Cytotoxic T Lymphocyte 
• EP – Empty 
• F – Female 
• F1 – First Filial Generation 
• GCs – Glucocorticoids 
• GVHD – Graft Versus Host Disease 
• GVL – Graft Versus Leukemia 
• Gy – Gray 
• HSCT – Hematopoietic Stem Cell Transplantation 
• i.p – Intraperitoneal 
• i.v – Intravenous 
• IFN-γ – Interferon-gamma 
• M – Male 
• MNPs – Magnetic Nanoparticles 
• MSC – Mesenchymal Stem Cells 
• NPs – Nanoparticles 
• P – Primary 
• PBS – Phosphate Buffered Saline 
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• S – Secondary 
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