Efficacy of Nanoparticle-based Localised Immunomodulation to Reduce Graft-versus-host Disease in Murine Model of Bone Marrow Transplantation: A Systematic Review
DOI:
https://doi.org/10.63501/xyvdbe23Keywords:
Bone Marrow Transplantation, Hematopoietic Stem Cell Transplantation , Graft vs Host Disease , NanoparticlesAbstract
Background and Aim
Bone marrow transplantation (BMT), 73.8% of all transplants, is a cornerstone therapy for various haematological disorders. It follows a life-threatening complication; acute graft vs host disease (aGVHD) with 30-60% of incidence. Despite being standard, conventional immunosuppressive therapies are frequently associated with toxicity, infections, and 70% of non-responding patient. A novel, highly targeted nanoparticle-based strategy, while being explored in solid organ transplantation, remains under-investigated in BMT. This systematic review aims to evaluate the efficacy of NP-based strategies to mitigate aGVHD following BMT.
Methods
A systematic search was conducted using PubMed, Cochrane Library, and Science Direct from April 23, 2001, to August 13, 2024 for propensity-matched studies evaluating efficacy of NP-based therapies in murine models to mitigate GVHD severity. Data were extracted independently by two reviewers. Study quality was assessed using SYRCLE tool. Descriptive analysis was performed as meta-analysis was not possible due to heterogeneity in intervention types.
Results
Of the 66 studies retrieved, 15 pre-clinical animal studies were selected sample size 2-30/group). Overall, risk of bias was moderate. 12/15 studies reported lower clinical GVHD scores (p< 0.001), 14/15 prevented weight loss (p<0.05), 14/15 prolonged survival with (HR 0.2055, p=0.0112). Histopathological assessments showed decreased tissue damage in the liver (10/11), the intestine (12/12), and the skin (7/7) with p<0.05. 14/15 reported lower levels of inflammatory cytokines (p<0.001).
Conclusion
NPs therapy has a promising efficacy in mitigating GVHD after BMT. Nevertheless, the heterogeneity of interventions makes generalizability still difficult. It underscores the need for future in-depth translational studies.
References
1. Mohty M, Apperley JF. Long-term physiological side effects after allogeneic bone marrow transplantation. Hematology [Internet]. 2010;2010(1):229–36. Available from: http://dx.doi.org/10.1182/asheducation-2010.1.229
2. Ali N, Iftikhar R, Mir MA, Bokhari SW, Rehman JU, Zaidi U, et al. Haematopoietic Stem Cell Transplant Trends in Pakistan: Activity Survey from Pakistan Bone Marrow Transplant Group. J Transplant [Internet]. 2023 Jan 1 [cited 2025 Jul 29];2023(1):8865364. Available from: /doi/pdf/10.1155/2023/8865364
3. Ranghar S, Sirohi P, Verma P, Agarwal V. BRAZILIAN ARCHIVES OF BIOLOGY AND TECHNOLOGY Nanoparticle-based Drug Delivery Systems: Promising Approaches Against Infections. Arch Biol Technol v. 57(2):209–22.
4. Holtan SG, Marcelo P, Weisdorf DJ. Acute graft-versus-host disease: A bench-to-bedside update. Blood [Internet]. 2014 Jul 17 [cited 2025 Jul 29];124(3):363–73. Available from: https://pubmed.ncbi.nlm.nih.gov/24914140/
5. Garnett C, Apperley JF, Pavlu J. Treatment and management of graft-versus-host disease: Improving response and survival. Ther Adv Hematol [Internet]. 2013 [cited 2025 Jul 29];4(6):366–78. Available from: https://pubmed.ncbi.nlm.nih.gov/24319572/
6. Jagasia M, Arora M, Flowers MED, Chao NJ, McCarthy PL, Cutler CS, et al. Risk factors for acute GVHD and survival after hematopoietic cell transplantation. Blood [Internet]. 2012 Jan 5 [cited 2025 Jul 29];119(1):296–307. Available from: https://pubmed.ncbi.nlm.nih.gov/22010102/
7. Al Malki MM, Gendzekhadze K, Yang D, Mokhtari S, Parker P, Karanes C, et al. Long-Term Outcome of Allogeneic Hematopoietic Stem Cell Transplantation from Unrelated Donor Using Tacrolimus/Sirolimus-based GvHD Prophylaxis: Impact of HLA Mismatch. Transplantation [Internet]. 2020 May 1 [cited 2025 Jul 29];104(5):1070–80. Available from: https://pubmed.ncbi.nlm.nih.gov/31449184/
8. Ballen K, Logan BR, Chitphakdithai P, Kuxhausen M, Spellman SR, Adams A, et al. Unlicensed Umbilical Cord Blood Units Provide a Safe and Effective Graft Source for a Diverse Population: A Study of 2456 Umbilical Cord Blood Recipients. Biology of Blood and Marrow Transplantation [Internet]. 2020 Apr 1 [cited 2025 Jul 29];26(4):745–57. Available from: https://www.astctjournal.org/action/showFullText?pii=S1083879119307839
9. Greco R, Lorentino F, Nitti R, Lupo Stanghellini MT, Giglio F, Clerici D, et al. Interleukin-6 as Biomarker for Acute GvHD and Survival After Allogeneic Transplant With Post-transplant Cyclophosphamide. Front Immunol [Internet]. 2019 Oct 1 [cited 2025 Jul 29];10. Available from: https://pubmed.ncbi.nlm.nih.gov/31632401/
10. Nassereddine S, Rafei H, Elbahesh E, Tabbara I. Acute graft versus host disease: A comprehensive review. Anticancer Res [Internet]. 2017;37(4):1547–55. Available from: http://dx.doi.org/10.21873/anticanres.11483
11. Jamil MO, Mineishi S. State-of-the-art acute and chronic GVHD treatment. Int J Hematol [Internet]. 2015;101(5):452–66. Available from: http://dx.doi.org/10.1007/s12185-015-1785-1
12. Cutler CS, Koreth J, Ritz J. Mechanistic approaches for the prevention and treatment of chronic GVHD. Blood [Internet]. 2017;129(1):22–9. Available from: http://dx.doi.org/10.1182/blood-2016-08-686659
13. Jagasia M, Arora M, Flowers MED, Chao NJ, McCarthy PL, Cutler CS, et al. Risk factors for acute GVHD and survival after hematopoietic cell transplantation. Blood [Internet]. 2012 Jan 5 [cited 2025 Jul 29];119(1):296–307. Available from: https://pubmed.ncbi.nlm.nih.gov/22010102/
14. Zeiser R, Blazar BR. Acute Graft-versus-Host Disease — Biologic Process, Prevention, and Therapy. New England Journal of Medicine [Internet]. 2017 Nov 30 [cited 2025 Jul 29];377(22):2167–79. Available from: https://pubmed.ncbi.nlm.nih.gov/29171820/
15. Mielcarek M, Furlong T, Storer BE, Green ML, McDonald GB, Carpenter PA, et al. Effectiveness and safety of lower dose prednisone for initial treatment of acute graft-versus-host disease: A randomized controlled trial. Haematologica [Internet]. 2015 [cited 2025 Jul 29];100(6):842–8. Available from: https://pubmed.ncbi.nlm.nih.gov/25682602/
16. Martin PJ, Rizzo JD, Wingard JR, Ballen K, Curtin PT, Cutler C, et al. First- and Second-Line Systemic Treatment of Acute Graft-versus-Host Disease: Recommendations of the American Society of Blood and Marrow Transplantation. Biology of Blood and Marrow Transplantation [Internet]. 2012 Aug [cited 2025 Jul 29];18(8):1150–63. Available from: https://pubmed.ncbi.nlm.nih.gov/22510384/
17. Lee SE, Cho BS, Kim JH, Yoon JH, Shin SH, Yahng SA, et al. Risk and prognostic factors for acute GVHD based on NIH consensus criteria. Bone Marrow Transplant [Internet]. 2013 Apr [cited 2025 Jul 29];48(4):587–92. Available from: https://pubmed.ncbi.nlm.nih.gov/23000645/
18. Ragelle H, Danhier F, Préat V, Langer R, Anderson DG. Nanoparticle-based drug delivery systems: a commercial and regulatory outlook as the field matures. Expert Opin Drug Deliv [Internet]. 2017;14(7):851–64. Available from: http://dx.doi.org/10.1080/17425247.2016.1244187
19. Singh R, Lillard Jr JW. Nanoparticle-based targeted drug delivery. Exp Mol Pathol [Internet]. 2009;86(3):215–23. Available from: http://dx.doi.org/10.1016/j.yexmp.2008.12.004
20. Afshari AR, Sanati M, Mollazadeh H, Kesharwani P, Johnston TP, Sahebkar A. Nanoparticle-based drug delivery systems in cancer: A focus on inflammatory pathways. Semin Cancer Biol [Internet]. 2022 Nov 1 [cited 2025 Jun 21];86:860–72. Available from: https://www.sciencedirect.com/science/article/abs/pii/S1044579X22000189?via%3Dihub
21. Wang H, Zhou Y, Sun Q, Zhou C, Hu S, Lenahan C, et al. Update on nanoparticle-based drug delivery system for anti-inflammatory treatment. Front Bioeng Biotechnol [Internet]. 2021;9:630352. Available from: http://dx.doi.org/10.3389/fbioe.2021.630352
22. Fang RH, Zhang L. Nanoparticle-based modulation of the immune system. Annu Rev Chem Biomol Eng [Internet]. 2016;7(1):305–26. Available from: http://dx.doi.org/10.1146/annurev-chembioeng-080615-034446
23. Fujii S, Miura Y. Immunomodulatory and Regenerative Effects of MSC-Derived Extracellular Vesicles to Treat Acute GVHD. Stem Cells [Internet]. 2022 Nov 29 [cited 2025 Jun 21];40(11):977–90. Available from: https://dx.doi.org/10.1093/stmcls/sxac057
24. Horwitz DA, Wang JH, Kim D, Kang C, Brion K, Bickerton S, et al. Nanoparticles loaded with IL-2 and TGF-β promote transplantation tolerance to alloantigen. Front Immunol. 2024;15.
25. Pareek S, Flegle AS, Boagni D, Kim JY, Yoo D, Trujillo-Ocampo A, et al. Post Transplantation Bilirubin Nanoparticles Ameliorate Murine Graft Versus Host Disease via a Reduction of Systemic and Local Inflammation. Front Immunol. 2022 Jun 1;13.
26. Ouzzani M, Hammady H, Fedorowicz Z, Elmagarmid A. Rayyan-a web and mobile app for systematic reviews. Syst Rev. 2016 Dec 5;5(1).
27. Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. Vol. 372, The BMJ. BMJ Publishing Group; 2021.
28. Hooijmans CR, Rovers MM, De Vries RBM, Leenaars M, Ritskes-Hoitinga M, Langendam MW. SYRCLE’s risk of bias tool for animal studies. BMC Med Res Methodol. 2014 Mar 26;14(1).
29. Przybylski S, Gasch M, Marschner A, Ebert M, Ewe A, Helmig G, et al. Influence of nanoparticle-mediated transfection on proliferation of primary immune cells in vitro and in vivo. PLoS One [Internet]. 2017 May 1 [cited 2025 Jul 29];12(5). Available from: https://pubmed.ncbi.nlm.nih.gov/28463994/
30. Kaiser TK, Li H, Roßmann L, Reichardt SD, Bohnenberger H, Feldmann C, et al. Glucocorticoids delivered by inorganic–organic hybrid nanoparticles mitigate acute graft-versus-host disease and sustain graft-versus-leukemia activity. Eur J Immunol [Internet]. 2020 Aug 1 [cited 2025 Jul 29];50(8):1220–33. Available from: https://pubmed.ncbi.nlm.nih.gov/32133644/
31. Li KL, Li JY, Xie GL, Ma XY. Exosomes Released From Human Bone Marrow–Derived Mesenchymal Stem Cell Attenuate Acute Graft-Versus-Host Disease After Allogeneic Hematopoietic Stem Cell Transplantation in Mice. Front Cell Dev Biol [Internet]. 2021 Apr 6 [cited 2025 Jul 29];9. Available from: https://pubmed.ncbi.nlm.nih.gov/33889570/
32. Mei D, Xue Z, Zhang T, Yang Y, Jin L, Yu Q, et al. Immune isolation-enabled nanoencapsulation of donor T cells: a promising strategy for mitigating GVHD and treating AML in preclinical models. J Immunother Cancer [Internet]. 2024 Sep 5 [cited 2025 Jul 29];12(9). Available from: https://pubmed.ncbi.nlm.nih.gov/39242117/
33. Wang L, Gu Z, Zhao X, Yang N, Wang F, Deng A, et al. Extracellular Vesicles Released from Human Umbilical Cord-Derived Mesenchymal Stromal Cells Prevent Life-Threatening Acute Graft-Versus-Host Disease in a Mouse Model of Allogeneic Hematopoietic Stem Cell Transplantation. Stem Cells Dev [Internet]. 2016 Dec 15 [cited 2025 Jul 29];25(24):1874–83. Available from: https://pubmed.ncbi.nlm.nih.gov/27649744/
34. Jiang Y, Zhao J, Wang M, Huang F, Li J, Liu R, et al. Mesenchymal stem cell-derived exosomes can alleviate GVHD and preserve the GVL effect in allogeneic stem cell transplantation animal models. Front Immunol [Internet]. 2023 [cited 2025 Jul 29];14. Available from: https://pubmed.ncbi.nlm.nih.gov/38124750/
35. Liu W, Zhou N, Liu Y, Zhang W, Li X, Wang Y, et al. Mesenchymal stem cell exosome-derived miR-223 alleviates acute graft-versus-host disease via reducing the migration of donor T cells. Stem Cell Res Ther [Internet]. 2021 Dec 1 [cited 2025 Jul 29];12(1):1–16. Available from: https://stemcellres.biomedcentral.com/articles/10.1186/s13287-021-02159-2
36. Kuroiwa T, Kakishita E, Hamano T, Kataoka Y, Seto Y, Iwata N, et al. Hepatocyte growth factor ameliorates acute graft-versus-host disease and promotes hematopoietic function. Journal of Clinical Investigation [Internet]. 2001 [cited 2025 Jul 29];107(11):1365–73. Available from: https://pubmed.ncbi.nlm.nih.gov/11390418/
37. Fujii S, Miura Y, Fujishiro A, Shindo T, Shimazu Y, Hirai H, et al. Graft-Versus-Host Disease Amelioration by Human Bone Marrow Mesenchymal Stromal/Stem Cell-Derived Extracellular Vesicles Is Associated with Peripheral Preservation of Naive T Cell Populations. Stem Cells [Internet]. 2018 Mar 1 [cited 2025 Jul 29];36(3):434–45. Available from: https://dx.doi.org/10.1002/stem.2759
38. Zhang Y, Shlomchik WD, Joe G, Louboutin JP, Zhu J, Rivera A, et al. APCs in the Liver and Spleen Recruit Activated Allogeneic CD8+ T Cells to Elicit Hepatic Graft-Versus-Host Disease. The Journal of Immunology [Internet]. 2002 Dec 15 [cited 2025 Jul 29];169(12):7111–8. Available from: https://dx.doi.org/10.4049/jimmunol.169.12.7111
39. Bernardes PTT, Rezende BM, Resende CB, De Paula TP, Reis AC, Gonçalves WA, et al. Nanocomposite treatment reduces disease and lethality in a murine model of acute graft-versus-host disease and preserves anti-tumor effects. PLoS One [Internet]. 2015 Apr 13 [cited 2025 Jun 21];10(4). Available from: https://pubmed.ncbi.nlm.nih.gov/25875016/
40. Cheng J, Zhou Y, Chen B, Wang J, Xia G, Jin N, et al. Prevention of acute graft-versus-host disease by magnetic nanoparticles of Fe3O4 combined with cyclosporin A in murine models. Int J Nanomedicine [Internet]. 2011 [cited 2025 Jun 21];6:2183–9. Available from: https://pubmed.ncbi.nlm.nih.gov/22114482/
41. Zhao S, Zhang L, Han J, Chu J, Wang H, Chen X, et al. Conformal Nanoencapsulation of Allogeneic T Cells Mitigates Graft-versus-Host Disease and Retains Graft-versus-Leukemia Activity. ACS Nano [Internet]. 2016 Jun 28 [cited 2025 Jun 21];10(6):6189–200. Available from: https://pubmed.ncbi.nlm.nih.gov/27224853/
42. Mia MB, Saxena RK. Poly dispersed acid-functionalized single walled carbon nanotubes target activated T and B cells to suppress acute and chronic GVHD in mouse model. Immunol Lett [Internet]. 2020 Aug 1 [cited 2025 Jun 21];224:30–7. Available from: https://pubmed.ncbi.nlm.nih.gov/32504776/
43. Pareek S, Flegle AS, Boagni D, Kim JY, Yoo D, Trujillo-Ocampo A, et al. Post Transplantation Bilirubin Nanoparticles Ameliorate Murine Graft Versus Host Disease via a Reduction of Systemic and Local Inflammation. Front Immunol [Internet]. 2022 Jun 1 [cited 2025 Jul 29];13:893659. Available from: https://pmc.ncbi.nlm.nih.gov/articles/PMC9199387/
44. Ferrara JL, Levine JE, Reddy P, Holler E. Graft-versus-host disease. The Lancet [Internet]. 2009 [cited 2025 Jul 29];373(9674):1550–61. Available from: https://pubmed.ncbi.nlm.nih.gov/19282026/
45. Jagasia MH, Greinix HT, Arora M, Williams KM, Wolff D, Cowen EW, et al. National Institutes of Health Consensus Development Project on Criteria for Clinical Trials in Chronic Graft-versus-Host Disease: I. The 2014 Diagnosis and Staging Working Group Report. Biology of Blood and Marrow Transplantation [Internet]. 2015 Mar 1 [cited 2025 Jul 29];21(3):389-401.e1. Available from: https://pubmed.ncbi.nlm.nih.gov/25529383/
46. Blanco E, Shen H, Ferrari M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat Biotechnol [Internet]. 2015 Sep 8 [cited 2025 Jul 29];33(9):941–51. Available from: https://pubmed.ncbi.nlm.nih.gov/26348965/
47. Zou J, Peng H, Liu Y. The Roles of Exosomes in Immunoregulation and Autoimmune Thyroid Diseases. Front Immunol [Internet]. 2021 Nov 15 [cited 2025 Jul 29];12:757674. Available from: https://pmc.ncbi.nlm.nih.gov/articles/PMC8634671/
48. Wang J, Lu Z, Wientjes MG, Au JLS. Delivery of siRNA Therapeutics: Barriers and Carriers. AAPS J [Internet]. 2010 Dec [cited 2025 Jul 29];12(4):492. Available from: https://pmc.ncbi.nlm.nih.gov/articles/PMC2977003/
49. Bart van der Worp H, Howells DW, Sena ES, Porritt MJ, Rewell S, O’Collins V, et al. Can animal models of disease reliably inform human studies? PLoS Med [Internet]. 2010 Mar [cited 2025 Jul 29];7(3):1–8. Available from: https://pubmed.ncbi.nlm.nih.gov/20361020/
50. Hooijmans CR, Ritskes-Hoitinga M. Progress in Using Systematic Reviews of Animal Studies to Improve Translational Research. PLoS Med [Internet]. 2013 Jul [cited 2025 Jul 29];10(7). Available from: https://pubmed.ncbi.nlm.nih.gov/23874162/
51. Hamilton BK. Current approaches to prevent and treat GVHD after allogeneic stem cell transplantation. Hematology: the American Society of Hematology Education Program [Internet]. 2018 Nov 30 [cited 2025 Jul 29];2018(1):228. Available from: https://pmc.ncbi.nlm.nih.gov/articles/PMC6246030/
52. Dobrovolskaia MA, McNeil SE. Immunological properties of engineered nanomaterials. Nat Nanotechnol [Internet]. 2007 [cited 2025 Jul 29];2(8):469–78. Available from: https://pubmed.ncbi.nlm.nih.gov/18654343/
53. Ginhoux F, Guilliams M. Tissue-Resident Macrophage Ontogeny and Homeostasis. Immunity [Internet]. 2016 Mar 15 [cited 2025 Jul 29];44(3):439–49. Available from: https://pubmed.ncbi.nlm.nih.gov/26982352/
Downloads
Published
Issue
Section
License
This article is licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, sharing, adaptation, distribution, and reproduction in any medium or format, provided appropriate credit is given to the author(s) and the source. To view a copy of this license, visit: https://creativecommons.org/licenses/by/4.0